DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans.
نویسندگان
چکیده
The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically sensitized mutant background. Specifically, we screened for mutations that enhance the cell-death defects caused by a partial loss-of-function allele of the ced-3 caspase gene. We identified mutations in two genes not previously known to affect cell death, dpl-1 and mcd-1 (modifier of cell death). dpl-1 encodes the C. elegans homolog of DP, the human E2F-heterodimerization partner. By testing genes known to interact with dpl-1, we identified roles in cell death for four additional genes: efl-1 E2F, lin-35 Rb, lin-37 Mip40, and lin-52 dLin52. mcd-1 encodes a novel protein that contains one zinc finger and that is synthetically required with lin-35 Rb for animal viability. dpl-1 and mcd-1 act with efl-1 E2F and lin-35 Rb to promote programmed cell death and do so by regulating the killing process rather than by affecting the decision between survival and death. We propose that the DPL-1 DP, MCD-1 zinc finger, EFL-1 E2F, LIN-35 Rb, LIN-37 Mip40, and LIN-52 dLin52 proteins act together in transcriptional regulation to promote programmed cell death.
منابع مشابه
dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development.
The synthetic multivulva (synMuv) genes define two functionally redundant pathways that antagonize RTK/Ras signaling during Caenorhabditis elegans vulval induction. The synMuv gene lin-35 encodes a protein similar to the mammalian tumor suppressor pRB and has been proposed to act as a transcriptional repressor. Studies using mammalian cells have shown that pRB can prevent cell cycle progression...
متن کاملC. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions.
To obtain insight into the role of the retinoblastoma susceptibility gene (Rb; also known as Rb1) in apoptosis, we analyzed Caenorhabditis elegans mutants lacking a functional lin-35 RB gene. We found that the loss of lin-35 function results in a decrease in constitutive germ cell apoptosis. We present evidence that lin-35 promotes germ cell apoptosis by repressing the expression of ced-9, an a...
متن کاملPromotion of oogenesis and embryogenesis in the C. elegans gonad by EFL-1/DPL-1 (E2F) does not require LIN-35 (pRB).
In Caenorhabditis elegans, EFL-1 (E2F), DPL-1 (DP) and LIN-35 (pRb) act coordinately in somatic tissues to inhibit ectopic cell division, probably by repressing the expression of target genes. EFL-1, DPL-1 and LIN-35 are also present in the germline, but do not always act together. Strong loss-of-function mutations in either efl-1 or dpl-1 cause defects in oogenesis that result in sterility, wh...
متن کاملZinc-Finger Protein to Promote Programmed Cell Death in Caenorhabditis elegans
The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically sensitized mutant background. Specifically, we screened for mutations that enhance the celldeath defects caused by a partial loss-of-function allele of the ced-...
متن کاملC. elegans Class B Synthetic Multivulva Genes Act in G1 Regulation
The single C. elegans member of the retinoblastoma gene family, lin-35 Rb, was originally identified as a synthetic Multivulva (synMuv) gene [1]. These genes form two redundant classes, A and B, that repress ectopic vulval cell fate induction. Recently, we demonstrated that lin-35 Rb also acts as a negative regulator of G(1) progression and likely is the major target of cyd-1 Cyclin D and cdk-4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 175 4 شماره
صفحات -
تاریخ انتشار 2007